Sabtu, 06 Oktober 2012

TEKNIK PERCOBAAN BERBAHAYA PADA LABORATORIUM KIMIA



Percobaan-percobaan dalam laboratorium dapat meliputi berbagai jenis pekerjaan diantaranya mereaksikan bahan-bahan kimia, destilasi, ekstraksi, memasang peralatan, dan sebagainya.  Masing-masing teknik dapat mengandung bahaya yang berbeda antara satu dengan yang lainnya. Tentu saja bahan tersebut sangat berkaitan dengan penggunaan bahan dalam percobaan, sehingga susah untuk memisahkan bahaya antara teknik dan bahan. Walaupun demikian, dapat kiranya diuraikan secara tersendiri dan bersifat umum dari bahaya berbagai macam teknik dan bahan, sehingga memungkinkan untuk memperkecil dan memperkirakan bahaya yang dapat timbul dalam kaitanyya dengan teknik dan bahan yang digunakan.

A. Reaksi Kimia
Semua reaksi kimia menyangkut perubahan energi yang diwujudkan dalam bentuk panas. Kebanyakan reaksi kimia disertai dengan pelepasan panas (reaksi eksotermis), meskipun adapula beberapa reaksi kimi yang menyerap panas (reaksi endotermis). Bahaya dari suatu reaksi kimia terutama adalah karena proses pelepasan energi (panas) yang demikian banyak dan dalam kecepatan yang sangat tinggi, sehingga tidak terkendalikan dan bersifat destruktif (merusak) terhadap lingkungan, termasuk operator/orang yang melakukannya.
Banyak kejadian dan kecelakaan di dalam laboratorium sebagai akibat reaksi kimia yang hebat atau eksplosif (bersifat ledakan). Namun kecelakaan tersebut pada hakikatnya disebabkan oleh kurangnya pengertian atau apresiasi terhadap faktor-faktor kimia-fisika yang mempengaruhi kecepatan reaksi kimia. Beberapa faktor yang dapat mempengaruhi kecepatan suatu reaksi kimia adalah konsentrasi pereaksi, kenaikan suhu reaksi, dan adanya katalis.
Sesuai denga hukum aksi masa, kecepatan reaksi bergantung pada konsentrasi zat pereaksi. Oleh karena itu, untuk percobaan-percobaan yang belum dikenal bahayanya, tidak dilakukan dengan konsetrasi pekat, melainkan konsentrasi pereaksi kira-kira 10% saja. Kalau reaksi telah dikenal bahayanya, maka konsetrasi pereaksi cukup 2 – 5 % saja sudah memadahi. Suatu contoh, apabila amonia pekat direaksikan dengan dimetil sulfat, maka reaksi akan bersifat eksplosif, akan tetapi tidak demikian apabila digunakan amonia encer.
Pengaruh suhu terhadap kecepatan reaksi kimia dapat diperkirakan dengan persamaan Arhenius, dimana kecepatan reaksi bertambah secara kesponensial dengan bertambahnya suhu. Secara kasar apabila suhu naik sebesar 10 oC, maka kecepatan reaksi akan naik menjadi dua kali. Atau apabila suhu reaksi mendadak naik 100 oC, ini berarti bahwa kecepatan reaksi mendadak naik berlipat 210 = 1024 kali. Di sinilah pentingnya untuk mengadakan  kendali terhadap suhu reaksi, misalnya dengan pendinginan apabila reaksi bersifat eksotermis. Suatu contoh asam meta‑nitrobenzensulfonat pada suhu sekitar 150 oC  akan meledak akibat reaksi penguraian eksotermis. Campuran kalium klorat, karbon, dan belerang menjadi eksplosif pada suhu tinggi atau jika kena tumbukan, pengadukan, atau gesekan (pemanasan pelarut). Dengan mengetahui pengarauh kedua faktor di atas maka secara umum dapatlah dilakukan pencegahan dan pengendalian terhadap reaksi-reaksi kimia yang mungkin bersifat eksplosif.

B. Pemanasan.
Pemanasan dapat dilakukan dengan listrik, gas, dan uap. Untuk laboratorium yang jauh dari sarana tersebut, kadang kala dipakai pula pemanas kompor biasa. Pemanasan tersebut biasanya digunakan untuk mempercepat reaksi, pelarutan, destilasi, maupun ekstraksi.
Untuk pemanasan pelarut-pelarut organik (titik didih di bawah 100 oC), seperti eter, metanol, alkohol, benzena, heksana, dan sebagainya, maka penggunaan penangas air adalah cara termurah dan aman. Pemanasan dengan api terbuka, meskipun dengan bagaimana api sekecil apapun, akan sangat berbahaya karena api tersebut dapat menyambar (meloncat) ke arah uap pelarut organik. Demikian juga pemanasan dengan hot plate juga berbahaya, karena suhu permukaan dapat jauh melebihi titik nyala pelarut organik.
Pemanasan pelarut yang bertitik didih lebih dari 100 oC, dapat dilakukan dengan aman apabila memakai labu gelas borosilikat dan pemanas listrik (heating matle). Pemanas tersebut   ukurannya harus sesuai besarnya labu gelas. Penangas minyak dapat pula dipakai meskipun agak kurang praktis. Walaupun demikian penangas pasir yang dipanaskan dengan terbuka, tetap berbahaya untuk bahan-bahan yang mudah teerbakar. Untuk keperluan pendidikan, pemanas bunsen dengan dilengkapi anyaman kawat (wire gause) cukup murah dan memadahi untuk bahan-bahan yang tidak mudah terbakar.


C. Destruksi.
Dalam analisis kimia terutama untuk mineral, tanah, atau makanan, diperlukan destruksi contoh agar komponen-komponen yang akan dianalisis terlepas dari matriks (senyawa-senyawa lain). Biasnya reaksi destruksi dilekukan dengan asam seperti asam sulfat pekat, asam nitrat, asam klorida tanpa atau ditambah atau ditambah peroksida seperti persulfat, perklorat, hidrogen peroksida, dan sebagainya. Selain itu, biasanya reaksi juga harus dipanaskan untuk mempermudah proses destruksi. Jelas dalam pekerjaan destruksi terkumpul beberapa faktor bahaya sekaligus, yaitu bahan berbahaya (eksplosif) dan kondisi suhu tinggi yang menambah tingkat bahaya.
Oleh karena itu, destruksi harus dilakukan amat berhati-hati, diantaranya adalah dengan:
1.      Pelajari dan ikuti prosedur kerja secara seksama, termasuk pengukuran jumlah reagen secara tepat dan cara  pemanasannya.
2.      Percobaan dilakukan dalam almari asam. Hati-hati dalam membuka dan menutup pintu almari asam pada saat proses destruksi berlangsung.
3.      Lindungi diri dengan kacamata/pelindugn muka dan sarung tangan pada setiap kali bekerja.
4.      Terutama bagi para pekerja baru atau yang belum berpengalaman, diperlukan supervisi atau konsultasi dengan yang lebih berpengalaman.
Dengan cara di atas akan dapat dicegah terjadinya ledakan yang dapat mengakibatkan luka oleh pecahan kaca atau percikan bahan-bahan kimia yang panas dan korosif.

D. Destilasi.
Destilasi merupakan proses gabungan antara pemanasan dan pendinginan uap yang terbentuk sehingga diperoleh cairan kembali yang murni. Bahaya pemanasan cairan dapat dihindari dengan memperhatikan sub-bab  pemanasan. Dalam pemanasan cairan biasanya ditambahkan batu didih (boililng chips), untuk mencegah pendidihan yang mendadak (bumping). Batu didih yang berpori perlu diganti setiap kali akan melakukan destilasi kembali. Untuk destilasi hampa udara (vacum destilation), aliran udara melalui kapiler ke dalam bagian bawah labu dapat merupakan pengganti batu didih.
Bahaya yang sering timbul dalam pendingin Leibig adalah kurang kuatnya selang air baik dari keran maupun yang menuju pipa pendingin. Lepasnya selang air dapat menyebabkan banjir dan proses pendinginan tidak berjalan dan uap cairan berhamburan ke dalam ruangan laboratorium. Oleh karena itu, terutama untuk destilasi yang terus-menerus atau sering ditinggalkan, hubungan selang dengan keran dan pipa pendingin perlu diikat dengan kawat.
Labu didih yang  terbuat dari gelas perlu dipilih yang kuat. Labu didih bekas atau yang telah lama dipakai, diperiksa terlebih dahulu terhadap kemungkinan adanya keretakan atau scratch. Hal ini penting, terlebih-lebih untuk destilasi vakum. Apabila pemanasan yang dipakai adalah penangas air, maka perlu diingat bahwa suhu permukaan bak penangas yang terbuat dari logam, dapat melebihi titik nyala dari pelarut yang dalam labu. Dengan demikian, harus dapat dihindarkan kontak antara cairan dengan permukaan penangas, baik pada saat mengisi labu destilasi dengan cairan maupun pemasangan atau pembongkaran peralatan destilasi.

E. Refluks.
Refluks juga merupakan gabungan anrara pemanasan cairan dan pendinginan uap, tetapi kondensat yang terbentuk dikembalikan ke dalam labu didih. Karena prosesnya mirip dengan destilasi, maka bahaya teknik tersebut serrta cara pencegahannya adalah sama dengan teknik destilasi.

F. Pengukuran Volume Cairan
Memipet cairan atau larutan dalam volume tertentu dengan pipet, secara umum tidak diperkenankan memakai mulut untuk menghindari bahaya tertelan dan kontaminasi. Uap dan gas beracun dapat larut dalam air ludah (saliva). Memakai pompa karet (rubber bulb) untuk mengisi pipet merupaian cara yang paling aman dan praktis, meskipun memerlukan sedikit latihan. Sedangkan untuk cairan yang korosif dapat dilakukan dengan pipet isap (hypodermic syringe).
Apabila menuangkan cairan korosif dari sebuah botol, lindungi label botol terhadap kerusakan oleh tetesan cairan.  Untuk menuangkan cairan ke dalam gelas ukur bermulut kecil, perlu dipakai corong gelas agar tidak tumpah.

G. Pendinginan.
Karbon dioksida padat (dry ice) dan nitrogen cair adalah pendingin yang sering dipakai. Keduanya dapat membakar atau “menggigit” kulit, sehingga dalam  penanganannya harus memakai sarung tangan dan pelindung mata. Karbon dioksida dapat dipakai bersama-sama dengan pelarut organik untuk menambah pendinginan. Karena banyak terbentuk gas (penguapan) maka pelarut yang digunakan harus nontoksik dan tidak mudah terbakar. Propana-2-ol lebih baik daripada pelarut organik terklonisasi atau aseton yang mudah terbakar.
Notrogen cair biasa dipakai sebagai “trap” uap air dalam destilasi vakum, agar air tidak merusak pompa. Dalam pendinginan tersebut udara dapat pula tersublimasi menjadi padat, termasuk oksigen dan hal ini berbahaya bila bercampur dengan bahan organik. Labu Dewar tempat nitrogen cair perlu  pula dilindungi dengan logam agar tidak berbahaya bila pecah.
Baik karbon dioksida mapun nitrogen  mempunyai berat jenis yang lebih berat daripada udara, sehingga dapat mendesak udara untuk pernafasan. Oleh karena itu, bekerja dengan kedua pendingin tersebut perlu dalam ruang yang berventilasi baik atau di ruang terbuka. Dalam transportasi di gedung bertingkat, keduanya sama sekali tidak boleh diangkut melewati lift penumpang. Kemacetan lift yang dapat terjadi sewakti-waktu, dapat berakibat fatal karena gas tersebut akan mendesak oksigen dan kematian tidak dapat dihindarkan.

H. Perlakuan Terhadap Silika.
Silika dalam bentuk partikel-partikel kecil yang terserap ke dalam paru-paru dapat menimbulkan penyakit silikosis. Percobaan-percobaan dalam kromatorgrafi lapis tipis, banyak memakai bubuk halus silika gel. Hindarkanlah bubuk halus tersebut, karena dapat terjadi hamburan di dalam ruang udara pernafasan kita.
Asbes juga merupakan sumber partikel silika dan dengan panjang serat sebesar 5 mikron sangat berbahaya. Asbes sebagai bahan isolasi panas dalam laboratorium perlu dilapisi lagi dengan bahan yang dapat mencegah partikel halus beterbangan di udara tempat kita bernafas.
Glass wool apabila tidak hancur tidaklah berbahaya bagi paru-paru. Akan tetapi serat-serat glass wool tersebut sangat halus dan tajam serta dapat masuk ke dalam kulit apabila dipegang langsung oleh tangan kita. Ini akan menimbulkan gatal-gatal atau sakit dan oleh karena itu memegang glass wool harus dengan penjepit dari logam atau plastik.

I. Perlakuan Terhadap Air Raksa.
Percobaan-percobaan dengan manometer atau polarografi selalu memakai air raksa yang cukup berbahaya karena sifat racunnya (NAB = 0,05 mg/m3). Tetesan-tetesan air raksa dapat melenting atau meloncat tanpa dapat dilihat oleh mata kita, dan pecah berhamburan di atas meja kerja. Partikel-partikel kecil ini juga sukar kita lihat apalagi kalau sampai masuk ke celah-celah atau retakan-retakan meja. Apabila tidak hati-hati, maka ruang di mana kita bekerja dapat jenuh dengan uap air raksa. Udara ruangan yang jenuh dengan uap air raksa berarti telah jauh melebihi nilai ambang batas (NAB) uap air raksa tersebut.
Untuk menghindari bahaya tesebut di atas, daerah kerja dengan air raksa  perlu dipasang dulang (tray) yang diisi air, agar percikan air raksa dapat dikumpulkan. Ventilasi yang baik sangat diperlukan, dan apabila tidak ada, maka bekerja dalam ruangan yang terbuka jauh lebih aman daripada dalam ruangan tertutup.


J. Bekerja Dengan Peralatan Sinar Ultraviolet  dan Sinar X.
Banyak pekerjaan yang dilakukan dengan peralatan yang memancarkan cahaya ultraviolet (UV) seperti spektrofotometer atau kromatografi lapis tipis (TLC). Cahaya ultraviolet dapat merusak, dan terutama kerusakan pada korena mata. Oleh karena itu, harus dapat dihindarkan keterpaan cahaya ultraviolet  pada mata, baik pada saat membuka peralatan spektrofotometer maupun pada saat menyinari noda-noda kromatografi lapis tipis (TLC) dengan cahaya ultraviolet.
Peralatan yang memakai sinar-X, seperti fluoresensi atau difraksi sinar-X, lebih berbahaya lagi bila tidak dilakukan dengan hati-hati. Sinar-X mempunyai daya tembus yang kuat dan dapat merusak sel-sel tubuh. Usaha untuk menghindari serta melindungi diri terhadap kemungkinan keterpaan radiasi sinar-X (yang tak dapat dilihat oleh mata) merupakan suatu keharusan dalam bekerja dengan peralatan tersebut.
Dengan sendirinya, hal yang sama pula dilakukan bila kita bekerja dengan peralatan yang memancarkan sinar gamma yang lebih kuat daripada snar-X.